Del in cylindrical and spherical coordinates

This is a list of some vector calculus formulae of general use in working with various curvilinear coordinate systems.

Contents

Note

Table with the del operator in cylindrical, spherical and parabolic cylindrical coordinates
Operation Cartesian coordinates (x,y,z) Cylindrical coordinates (ρ,φ,z) Spherical coordinates (r,θ,φ) Parabolic cylindrical coordinates (σ,τ,z)
Definition
of
coordinates
\begin{matrix}
    \rho & = & \sqrt{x^2%2By^2} \\
    \phi & = & \arctan(y/x) \\
       z & = & z \end{matrix} \begin{matrix}
    x & = & \rho\cos\phi \\
    y & = & \rho\sin\phi \\
    z & = & z \end{matrix} \begin{matrix}
    x & = & r\sin\theta\cos\phi \\
    y & = & r\sin\theta\sin\phi \\
    z & = & r\cos\theta \end{matrix} \begin{matrix}
    x & = & \sigma \tau\\
    y & = & \frac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
    z & = & z \end{matrix}
\begin{matrix}
    r      & = & \sqrt{x^2%2By^2%2Bz^2} \\
    \theta & = & \arccos(z/r)\\
    \phi   & = & \arctan(y/x) \\ \end{matrix} \begin{matrix}
    r      & = & \sqrt{\rho^2 %2B z^2} \\
    \theta & = & \arctan{(\rho/z)}\\
    \phi   & = & \phi \end{matrix} \begin{matrix}
    \rho & = & r\sin(\theta) \\
    \phi & = & \phi\\
    z    & = & r\cos(\theta) \end{matrix} \begin{matrix}
    \rho\cos\phi & = & \sigma \tau\\
    \rho\sin\phi & = & \frac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
    z & = & z \end{matrix}
Definition
of
unit
vectors
\begin{matrix}
    \boldsymbol{\hat \rho} & = &  \frac{x}{\sqrt{x^2%2By^2}}\mathbf{\hat x}%2B\frac{y}{\sqrt{x^2%2By^2}}\mathbf{\hat y} \\
    \boldsymbol{\hat\phi} & = & -\frac{y}{\sqrt{x^2%2By^2}}\mathbf{\hat x}%2B\frac{x}{\sqrt{x^2%2By^2}}\mathbf{\hat y} \\
    \mathbf{\hat z}       & = &  \mathbf{\hat z}
    \end{matrix} \begin{matrix}
    \mathbf{\hat x} & = & \cos\phi\boldsymbol{\hat \rho}-\sin\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat y} & = & \sin\phi\boldsymbol{\hat \rho}%2B\cos\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat z} & = & \mathbf{\hat z}
    \end{matrix} \begin{matrix}
    \mathbf{\hat x} & = & \sin\theta\cos\phi\boldsymbol{\hat r}%2B\cos\theta\cos\phi\boldsymbol{\hat\theta}-\sin\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat y} & = & \sin\theta\sin\phi\boldsymbol{\hat r}%2B\cos\theta\sin\phi\boldsymbol{\hat\theta}%2B\cos\phi\boldsymbol{\hat\phi} \\
    \mathbf{\hat z} & = & \cos\theta        \boldsymbol{\hat r}-\sin\theta        \boldsymbol{\hat\theta} \\
    \end{matrix} \begin{matrix}
    \boldsymbol{\hat \sigma} & = & \frac{\tau}{\sqrt{\tau^2%2B\sigma^2}}\mathbf{\hat x}-\frac{\sigma}{\sqrt{\tau^2%2B\sigma^2}}\mathbf{\hat y} \\
    \boldsymbol{\hat\tau}    & = & \frac{\sigma}{\sqrt{\tau^2%2B\sigma^2}}\mathbf{\hat x}%2B\frac{\tau}{\sqrt{\tau^2%2B\sigma^2}}\mathbf{\hat y} \\
    \mathbf{\hat z}          & = & \mathbf{\hat z}
    \end{matrix}
\begin{matrix}
    \mathbf{\hat r}         &=&  \frac{ x }{\sqrt{x^2%2By^2%2Bz^2}}\mathbf{\hat x}\!%2B\!\frac{ y }{\sqrt{x^2%2By^2%2Bz^2}}\mathbf{\hat y}\!%2B\!\frac{z}{\sqrt{x^2%2By^2%2Bz^2}}\mathbf{\hat z}\\

    \boldsymbol{\hat\theta} &=&  \frac{ xz }{\sqrt{x^2%2By^2%2Bz^2}\sqrt{x^2%2By^2}}\mathbf{\hat x}\!%2B\!\frac{ yz }{\sqrt{x^2%2By^2%2Bz^2}\sqrt{x^2%2By^2}}\mathbf{\hat y}\!-\!\frac{\sqrt{x^2%2By^2}}{\sqrt{x^2%2By^2%2Bz^2}}\mathbf{\hat z} \\

    \boldsymbol{\hat\phi}   &=& -\frac{y}{\sqrt{x^2%2By^2}}\mathbf{\hat x}%2B\frac{x}{\sqrt{x^2%2By^2}}\mathbf{\hat y}
    \end{matrix} \begin{matrix}
    \mathbf{\hat r}         & = & \frac{\rho}{\sqrt{\rho^2 %2Bz^2}}\boldsymbol{\hat \rho}%2B\frac{   z}{\sqrt{\rho^2 %2Bz^2}}\mathbf{\hat z} \\
    \boldsymbol{\hat\theta} & = & \frac{z   }{\sqrt{\rho^2 %2Bz^2}}\boldsymbol{\hat \rho}-\frac{\rho}{\sqrt{\rho^2 %2Bz^2}}\mathbf{\hat z} \\
    \boldsymbol{\hat\phi}   & = & \boldsymbol{\hat\phi}
    \end{matrix} \begin{matrix}
    \boldsymbol{\hat \rho} & = & \sin\theta\mathbf{\hat r}%2B\cos\theta\boldsymbol{\hat\theta} \\
    \boldsymbol{\hat\phi} & = & \boldsymbol{\hat\phi} \\
    \mathbf{\hat z}       & = & \cos\theta\mathbf{\hat r}-\sin\theta\boldsymbol{\hat\theta} \\
    \end{matrix} \begin{matrix}
    \end{matrix}
A vector field \mathbf{A} A_x\mathbf{\hat x} %2B A_y\mathbf{\hat y} %2B A_z\mathbf{\hat z} A_\rho\boldsymbol{\hat \rho} %2B A_\phi\boldsymbol{\hat \phi} %2B A_z\boldsymbol{\hat z} A_r\boldsymbol{\hat r} %2B A_\theta\boldsymbol{\hat \theta} %2B A_\phi\boldsymbol{\hat \phi} A_\sigma\boldsymbol{\hat \sigma} %2B A_\tau\boldsymbol{\hat \tau} %2B A_\phi\boldsymbol{\hat z}
Gradient \nabla f {\partial f \over \partial x}\mathbf{\hat x} %2B {\partial f \over \partial y}\mathbf{\hat y} 
  %2B {\partial f \over \partial z}\mathbf{\hat z} {\partial f \over \partial \rho}\boldsymbol{\hat \rho} 
  %2B {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} 
  %2B {\partial f \over \partial z}\boldsymbol{\hat z} {\partial f \over \partial r}\boldsymbol{\hat r} 
  %2B {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat \theta} 
  %2B {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}  \frac{1}{\sqrt{\sigma^{2} %2B \tau^{2}}} {\partial f \over \partial \sigma}\boldsymbol{\hat \sigma} %2B \frac{1}{\sqrt{\sigma^{2} %2B \tau^{2}}} {\partial f \over \partial \tau}\boldsymbol{\hat \tau} %2B {\partial f \over \partial z}\boldsymbol{\hat z}
Divergence \nabla \cdot \mathbf{A} {\partial A_x \over \partial x} %2B {\partial A_y \over \partial y} %2B {\partial A_z \over \partial z} {1 \over \rho}{\partial \left( \rho A_\rho  \right) \over \partial \rho} 
  %2B {1 \over \rho}{\partial A_\phi \over \partial \phi} 
  %2B {\partial A_z \over \partial z} {1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r} 
  %2B {1 \over r\sin\theta}{\partial \over \partial \theta} \left(  A_\theta\sin\theta \right)  
  %2B {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi}  \frac{1}{\sigma^{2} %2B \tau^{2}}{\partial A_\sigma \over \partial \sigma} %2B \frac{1}{\sigma^{2} %2B \tau^{2}}{\partial A_\tau \over \partial \tau} %2B {\partial A_z \over \partial z}
Curl \nabla \times \mathbf{A} \begin{matrix}
  \displaystyle\left({\partial A_z \over \partial y} - {\partial A_y \over \partial z}\right) \mathbf{\hat x} & %2B \\
  \displaystyle\left({\partial A_x \over \partial z} - {\partial A_z \over \partial x}\right) \mathbf{\hat y} & %2B \\
  \displaystyle\left({\partial A_y \over \partial x} - {\partial A_x \over \partial y}\right) \mathbf{\hat z} & \ \end{matrix} \begin{matrix}
  \displaystyle\left({1 \over \rho}{\partial A_z \over \partial \phi}
    - {\partial A_\phi \over \partial z}\right) \boldsymbol{\hat \rho} & %2B \\
  \displaystyle\left({\partial A_\rho \over \partial z} - {\partial A_z \over \partial \rho}\right) \boldsymbol{\hat \phi} & %2B \\
  \displaystyle{1 \over \rho}\left({\partial \left( \rho A_\phi \right) \over \partial \rho} 
    - {\partial A_\rho \over \partial \phi}\right) \boldsymbol{\hat z} & \ \end{matrix} \begin{matrix}
  \displaystyle{1 \over r\sin\theta}\left({\partial \over \partial \theta} \left( A_\phi\sin\theta \right)
    - {\partial A_\theta \over \partial \phi}\right) \boldsymbol{\hat r} & %2B \\
  \displaystyle{1 \over r}\left({1 \over \sin\theta}{\partial A_r \over \partial \phi} 
    - {\partial \over \partial r} \left( r A_\phi \right) \right) \boldsymbol{\hat \theta} & %2B \\
  \displaystyle{1 \over r}\left({\partial \over \partial r} \left( r A_\theta \right)
    - {\partial A_r \over \partial \theta}\right) \boldsymbol{\hat \phi} & \ \end{matrix} \begin{matrix}
  \displaystyle\left(\frac{1}{\sqrt{\sigma^{2} %2B \tau^{2}}}{\partial A_z \over \partial \tau}
    - {\partial A_\tau \over \partial z}\right) \boldsymbol{\hat \sigma} & - \\
  \displaystyle\left(\frac{1}{\sqrt{\sigma^{2} %2B \tau^{2}}}{\partial A_z \over \partial \sigma}- {\partial A_\sigma \over \partial z}\right) \boldsymbol{\hat \tau} & %2B \\
  \displaystyle\frac{1}{\sqrt{\sigma^{2} %2B \tau^{2}}}\left({\partial \left( \sqrt{\sigma^{2} %2B \tau^{2}} A_\sigma \right) \over \partial \tau} 
    - {\partial \left( \sqrt{\sigma^{2} %2B \tau^{2}} A_\tau \right) \over \partial \sigma}\right) \boldsymbol{\hat z} & \ \end{matrix}
Laplace operator \Delta f = \nabla^2 f {\partial^2 f \over \partial x^2} %2B {\partial^2 f \over \partial y^2} %2B {\partial^2 f \over \partial z^2} {1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right) 
  %2B {1 \over \rho^2}{\partial^2 f \over \partial \phi^2} 
  %2B {\partial^2 f \over \partial z^2} {1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right) 
  \!%2B\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right) 
  \!%2B\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \phi^2}  \frac{1}{\sigma^{2} %2B \tau^{2}} 
\left(  \frac{\partial^{2} f}{\partial \sigma^{2}} %2B 
\frac{\partial^{2} f}{\partial \tau^{2}} \right) %2B
\frac{\partial^{2} f}{\partial z^{2}}
Vector Laplacian \Delta \mathbf{A} = \nabla^2 \mathbf{A} \Delta A_x \mathbf{\hat x} %2B \Delta A_y \mathbf{\hat y} %2B \Delta A_z \mathbf{\hat z} \begin{matrix}
  \displaystyle\left(\Delta A_\rho - {A_\rho \over \rho^2} 
    - {2 \over \rho^2}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat \rho} & %2B \\
  \displaystyle\left(\Delta A_\phi - {A_\phi \over \rho^2} 
    %2B {2 \over \rho^2}{\partial A_\rho \over \partial \phi}\right) \boldsymbol{\hat\phi} & %2B \\
  \displaystyle\left(\Delta A_z \right) \boldsymbol{\hat z}  & \ \end{matrix} \begin{matrix}
  \left(\Delta A_r - {2 A_r \over r^2} 
    - {2 \over r^2\sin\theta}{\partial \left(A_\theta \sin\theta\right) \over \partial\theta}
    - {2 \over r^2\sin\theta}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat r} & %2B \\
  \left(\Delta A_\theta - {A_\theta \over r^2\sin^2\theta} 
    %2B {2 \over r^2}{\partial A_r \over \partial \theta} 
    - {2 \cos\theta \over r^2\sin^2\theta}{\partial A_\phi \over \partial \phi}\right) \boldsymbol{\hat\theta} & %2B \\
  \left(\Delta A_\phi - {A_\phi \over r^2\sin^2\theta}
    %2B {2 \over r^2\sin\theta}{\partial A_r \over \partial \phi}
    %2B {2 \cos\theta \over r^2\sin^2\theta}{\partial A_\theta \over \partial \phi}\right) \boldsymbol{\hat\phi} & \end{matrix}
Material derivative

[1] (\mathbf{A} \cdot \nabla) \mathbf{B}

\begin{matrix}
\displaystyle\left(A_x \frac{\partial B_x}{\partial x}%2BA_y \frac{\partial B_x}{\partial y} %2B A_z \frac{\partial B_x}{\partial z}\right)\boldsymbol{\hat{x}} & %2B \\
\displaystyle\left(A_x \frac{\partial B_y}{\partial x}%2BA_y \frac{\partial B_y}{\partial y} %2B A_z \frac{\partial B_y}{\partial z}\right)\boldsymbol{\hat{y}} & %2B \\
\displaystyle\left(A_x \frac{\partial B_z}{\partial x}%2BA_y \frac{\partial B_z}{\partial y} %2B A_z \frac{\partial B_z}{\partial z}\right)\boldsymbol{\hat{z}}
\end{matrix} \begin{matrix}
\left(A_\rho \frac{\partial B_\rho}{\partial \rho}%2B\frac{A_\phi}{\rho}\frac{\partial B_\rho}{\partial \phi}%2BA_z\frac{\partial B_\rho}{\partial z}-\frac{A_\phi B_\phi}{\rho}\right) \boldsymbol{\hat\rho} \!%2B\!\\
\left(A_\rho \frac{\partial B_\phi}{\partial \rho}%2B\frac{A_\phi}{\rho}\frac{\partial B_\phi}{\partial \phi}%2BA_z\frac{\partial B_\phi}{\partial z}%2B\frac{A_\phi B_\rho}{\rho}\right) \boldsymbol{\hat\phi}\!%2B\!\\
\left(A_\rho \frac{\partial B_z   }{\partial \rho}%2B\frac{A_\phi}{\rho}\frac{\partial B_z   }{\partial \phi}%2BA_z\frac{\partial B_z   }{\partial z}                           \right) \boldsymbol{\hat z}
\end{matrix} \begin{matrix}
\left(A_r \frac{\partial B_r}{\partial r}\!%2B\!\frac{A_\theta}{r}\frac{\partial B_r}{\partial \theta}\!%2B\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_r}{\partial \phi}\!-\!\frac{A_\theta B_\theta\!%2B\!A_\phi B_\phi}{r}\right)                  \boldsymbol{\hat r} \!%2B\!\\
\left(A_r \frac{\partial B_\theta}{\partial r}\!%2B\!\frac{A_\theta}{r}\frac{\partial B_\theta}{\partial \theta}\!%2B\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_\theta}{\partial \phi}\!%2B\!\frac{A_\theta B_r}{r}-\frac{A_\phi B_\phi\cot(\theta)}{r}\right)  \boldsymbol{\hat\theta} \!%2B\!\\
\left(A_r \frac{\partial B_\phi}{\partial r}\!%2B\!\frac{A_\theta}{r}\frac{\partial B_\phi}{\partial \theta}\!%2B\!\frac{A_\phi}{r\sin(\theta)}\frac{\partial B_\phi}{\partial \phi}\!%2B\!\frac{A_\phi B_r}{r}\!%2B\!\frac{A_\phi B_\theta \cot(\theta)}{r}\right)\boldsymbol{\hat\phi}
\end{matrix}
Differential displacement d\mathbf{l} = dx\mathbf{\hat x} %2B dy\mathbf{\hat y} %2B dz\mathbf{\hat z} d\mathbf{l} = d\rho\boldsymbol{\hat \rho} %2B \rho d\phi\boldsymbol{\hat \phi} %2B dz\boldsymbol{\hat z} d\mathbf{l} = dr\mathbf{\hat r} %2B rd\theta\boldsymbol{\hat \theta} %2B r\sin\theta d\phi\boldsymbol{\hat \phi} d\mathbf{l} = \sqrt{\sigma^{2} %2B \tau^{2}} d\sigma\boldsymbol{\hat \sigma} %2B \sqrt{\sigma^{2} %2B \tau^{2}} d\tau\boldsymbol{\hat \tau} %2B dz\boldsymbol{\hat z}
Differential normal area \begin{matrix}d\mathbf{S} = &dy\,dz\,\mathbf{\hat x} %2B \\ 
&dx\,dz\,\mathbf{\hat y} %2B \\ 
&dx\,dy\,\mathbf{\hat z}\end{matrix} \begin{matrix}
d\mathbf{S} = & \rho\, d\phi\, dz\,\boldsymbol{\hat \rho} %2B \\ 
& d\rho \,dz\,\boldsymbol{\hat \phi} %2B \\ 
& \rho \,d\rho d\phi \,\mathbf{\hat z}
\end{matrix} \begin{matrix}
d\mathbf{S} = & r^2 \sin\theta \,d\theta \,d\phi \,\mathbf{\hat r} %2B \\
& r\sin\theta \,dr\,d\phi \,\boldsymbol{\hat \theta} %2B \\
& r\,dr\,d\theta\,\boldsymbol{\hat \phi}
\end{matrix} \begin{matrix}
d\mathbf{S} = & \sqrt{\sigma^{2} %2B \tau^{2}}, d\tau\, dz\,\boldsymbol{\hat \sigma} %2B \\ 
& \sqrt{\sigma^{2} %2B \tau^{2}} d\sigma\,dz\,\boldsymbol{\hat \tau} %2B \\ 
& \sigma^{2} %2B \tau^{2} d\sigma, d\tau \,\mathbf{\hat z}
\end{matrix}
Differential volume dV = dx\,dy\,dz \, dV = \rho\, d\rho\, d\phi\, dz\, dV = r^2\sin\theta \,dr\,d\theta\, d\phi\, dV = \left( \sigma^{2} %2B \tau^{2} \right) d\sigma d\tau dz,
Non-trivial calculation rules:
  1. \operatorname{div\ grad\ } f = \nabla \cdot (\nabla f) = \nabla^2 f = \Delta f (Laplacian)
  2. \operatorname{curl\ grad\ } f = \nabla \times (\nabla f) = \mathbf{0}
  3. \operatorname{div\ curl\ } \mathbf{A} = \nabla \cdot (\nabla \times \mathbf{A}) = 0
  4. \operatorname{curl\ curl\ } \mathbf{A} = \nabla \times (\nabla \times \mathbf{A}) 
                                                = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} (using Lagrange's formula for the cross product)
  5. \Delta f g = f \Delta g %2B 2 \nabla f \cdot \nabla g %2B g \Delta f

References

  1. ^ Weisstein, Eric W.. "Convective Operator". Mathworld. http://mathworld.wolfram.com/ConvectiveOperator.html. Retrieved 23 March 2011. 

See also

External links